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A model of flapping motion in a plane jet
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Abstract

Flow visualization near the exit of a plane jet shows a small-amplitude disturbance whose wavelength is large relative to
the jet shear layer thickness. Further downstream, in the transition region, concentrated regions of vorticity are observed which
drive the flapping motion of the jet. These observations motivate an inviscid, two-dimensional model for the transitional region
of the jet. Linear stability analysis of a piecewise-uniform shear layer model indicates that small-amplitude, long wavelength
disturbances are unstable. Long wave theory shows that regions of high circulation convect downstream faster than regions of
low circulation resulting in nonlinear steepening and that the rate of the steepening is directly proportional to the strength of the
local shear. The long wave theory also shows that finite-amplitude sinuous disturbances at the jet centerline will grow linearly as
they convect downstream. The results predict the steepening and growth of the jet centerline observed in the flow visualization.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

Experiments [1–9] indicate that a planar, turbulent jet with high aspect ratio has an organized two-dimensional structure
that plays an important role in the flapping motion and transfer of momentum between the irrotational (outer) flow and the
shear layer. The flapping motion was originally suggested based on the quasi-periodic negative cross-correlation between the
fluctuating longitudinal velocities on either side of the jet centerline [2]. At high Reynolds numbers, the ‘flapping’ frequency
was shown to be Reynolds number independent when non-dimensionalized by the local mean velocity and the local jet half-
width [5] suggesting an inviscid mechanism for the flapping motion. In addition, these experiments indicate the existence of
large-scale, quasi two-dimensional, counter-rotating vortices which propagate periodically downstream like a Karman vortex
street and which occur in the transition region where the two mixing layers merge to form a single mixing layer. Antonia
et al. [8] performed experiments to determine the topology of these structures and measure their contribution to the momentum
and heat transport relative to the transport due to the random motions. In a reference frame moving with the centers of the
stuctures, they observed that the jet consists of adjacent vortical structures whose vorticity is antisymmetric relative to the jet
centerline.

The aformentioned papers describe the spatial structure of the plane jet and show that concentrated regions of vorticity
play a major role in the flapping motion. In an attempt to study the nonlinear process by which concentrated regions of
vorticity develop, multi-layer models with simple vorticity distributions have been studied. Rayleigh [10] first considered small-
amplitude disturbances to a piecewise-linear shear layer where the magnitude of the vorticity above and below the centerline
of the jet was equal. He found that small-amplitude disturbances are unstable for long wavelengths. Stern and Vorapayev [11],
motivated by the formation of vorticity fronts in geophysical flows, extended the uniform vorticity model to finite-amplitude
disturbances and showed that steepening fronts of vorticity formed from initially long wavelength disturbances. They considered
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only varicose disturbances which, due to their symmetry, are analogous in an inviscid flow to a wall-bounded shear layer.
Similarly Jimenez and Orlandi [12], motivated by the formation of streamwise vortices in turbulent boundary layers, showed
that wall-bounded shear layers can develop into concentrated regions of vorticity.

In the present work, we extend the work of Stern and Vorapayev [11] and Jimenez and Orlandi [12] to consider nonsymmetric
disturbances to a shear layer with arbitrary vorticity and show that concentrated fronts of vorticity may develop and steepen. In
Section 2, we present flow visualization of the near-exit and transition regions of the jet. Near the exit, small-amplitude sinuous
disturbances are observed which further downstream evolve into large-amplitude steeply-sloping disturbances apparently driven
by counterrotating concentrated regions of vorticity on opposite sides of the jet centerline. These results motivate an inviscid
model of a shear layer where the mean vorticity in the upper layer is positive and the mean vorticity in the lower layer is negative.
In Section 3, we present linear stability analysis for the uniform vorticity case and find that small-amplitude nonsymmetric
disturbances are unstable to long wavelengths. As a result, we examine the evolution of finite-amplitude long wavelength
disturbances for both an arbitrary continuous distribution of vorticity and for a discontinuous but uniform distribution of
vorticity.

2. Flow visualization of a planar jet

A two-dimensional jet was generated using a planar vertical slotD = 0.5 cm wide and 17.2 cm high in a 42.6 cm wide by
120 cm long tank filled with water to a depth of 30.5 cm, as shown in Fig. 1. A pump supplied water to a stack of tubes trapped
between the upstream end of slightly converging acrylic plates with a streamwise length of 55D that form a slot nozzle. The
uniformity of the jet exit velocity along the length of the slot was measured with a pitot tube and was within 2% except at the
ends of the slot. Vertical face plates at the nozzle exit plane ensured that fluid from behind the nozzle exit was not entrained in
the jet. The jet exit was 160D from the downstream end of the tank. A laser sheet in a horizontal plane at the midpoint of the
slot was used to illuminate tracer particles (14× 10−6 m diameter silver-coated hollow glass spheres) in the jet fluid. The tracer
particles remain in suspension for a time that is orders of magnitude longer than the experiment. No particles were initially in
the tank fluid. The flow was recorded using a CCD camera.

A computer-enhanced image of tracer particles in the transition region of a planar jet at a Reynolds number ofRe= 173
(based on the slot-width and average jet exit velocity) is shown in Fig. 2 over a streamwise domain of 4.8D < x < 16.6D

downstream of the nozzle exit. The tracer particles mark the jet fluid. The jet consists of an undulating shear layer with its main
component of velocity in the streamwise direction. The unmarked outer region consists of quiescent irrotational flow that is
eventually entrained by the jet. The few particles lying in the unmarked region are stray particles from a previous experiment.
The sinuous character, or flapping motion, of the jet is evident in the upstream portion of the jet. Consecutive images of the
flow field indicate that the waviness of the shear layer propagates downstream with the mean flow. The perturbations are non-
symmetric, or sinuous, with respect to the jet centerline, consistent with the result of our stability analysis, presented in the
next section, which indicates that non-symmetric modes are unstable. The lengthscale of the sinuous motion is about 3D, on
the order of the streamwise scale of the experiment, whereas the inner shear layer is much smaller. This result motivates our
nonlinear long wave theory, presented later in this paper.

Fig. 1. A schematic of the experimental setup (not to scale). Only 3 of the many tubes entering the slot are shown.
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Fig. 2. A computer-enhanced image of tracer particles in a plane perpendicular to the jet slot for 4.8D × 6.6D downstream from the jet exit at
Re = 173.

The frequency of the flapping motion is about 3 Hz, corresponding to a dimensionless frequency of 0.2 based on the mean
velocity at the jet exit and the slot half-width. The Reynolds number of 173 also suggests that the timescale of the inertial
flapping motion is fast compared to the timescale of viscous diffusion and, as a result, the flapping motion is driven by an
inviscid mechanism. Thus, the use of an inviscid model of the flow in the following sections is reasonable. Also evident in
Fig. 2 is an apparent steepening of the sinuous disturbances and the formation of downstream rotating coherent structures
antisymmetric with respect to the jet centerline. Like the waviness of the central shear layer, the rotating coherent structures
translate downstream.

3. Model formulation and results

We model the jet as two-dimensional, incompressible and inviscid. The flow is decomposed into four regions where the
vortical regions II and III in Fig. 3 are bounded above and below by irrotational regions I and IV. The interfacey = H+(x, t)

separates the irrotational flow from the layer of positive vorticity, the interfacey = H0(x, t) separates the positive and negative
vorticity regions, and the interfacey = H−(x, t) separates the negative vorticity layer from the irrotational flow below it. The

three interfaces located aty = H+(x, t), y = H0(x, t), andy = H−(x, t) approach the unperturbed mean valuesy = H
(∞)
+ ,0,

andH
(∞)
− as|x| → ∞. We non-dimensionalize all lengths with respect toH

(∞)
+ and time with respect to the mean vorticity as

|x| → ∞ in region II, 1/ω
(∞)
+ .

We introduce a stream function,ψ(x,y, t), such that the streamwise and transverse velocities

(
uj , vj

) =
(

∂ψj

∂y
,−∂ψj

∂x

)
, (1)

wherej = I, II, III, IV is used to denote the regions I–IV. Note that although we use the superscripts to denote the stream
function in each region, the stream function is continous across all four regions. The stream function satisfies Laplace’s equation
in regions I and IV and Poisson’s equation in regions II and III. This is expressed as
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Fig. 3. Piecewise linear model of an asymmetric planar jet.

∇2ψ I(x, y, t) = 0, y > H+(x, t),

∇2ψ II (x, y, t) = −ω+(x, y, t), H0(x, t) < y < H+(x, t),

∇2ψ III (x, y, t) = −ω−(x, y, t), H−(x, t) < y < H0(x, t),

∇2ψ IV (x, y, t) = 0, y < H−(x, t).

(2)

In the limit of uniform vorticity equal toω(∞)
+ in region II and equal toω(∞)

− in region III, ω+ → 1 andω− → β where

β = ω
(∞)
− /ω

(∞)
+ = H

(∞)
+ /H

(∞)
− is a measure of the asymmetry of the jet and implies that the total circulation of the

unperturbed jet equals zero. The model reduces to that considered by Rayleigh [10] in the limit asβ goes to−1.
The vorticity in regions II and III evolves according to the vorticity transport equation

D

Dt
ω = 0, (3)

whereD/Dt ≡ ∂/∂t +u ·∇. We impose the kinematic condition that points initially on an interface will remain on the interface
yielding

v = ∂H(+,0,−)

∂t
+ u

∂H(+,0,−)

∂x
, y = H(+,0,−). (4)

Across each interface the transverse velocity and the pressure are continuous:(
vI,II ,III ,pI,II ,III ) = (

vII ,III ,IV ,pII ,III ,IV )
, y = H(+,0,−). (5)

In Subsection 3.1, we briefly examine the linear stability of the jet in the uniform vorticity limit. The results of this subsection
motivate the nonlinear long wave analysis in Subsection 3.2 where a continuously varying distribution of vorticity is assumed.
In Subsection 3.3, we consider specific cases of the general long wave theory to obtain solutions for the motion of the interfaces
and to examine the effect of vorticity distribution and the type of disturbance, sinuous or varicose, on the evolution of the jet
shear layers.

3.1. Stability of the jet to small disturbances in the uniform vorticity limit

In this section, we study the linear, temporal stability of the inviscid model in the uniform vorticity limit, i.e. the velocity
u(y) is piecewise-linear such thatω+ → 1 andω− → β in (2). A solution for the stream function (2) is

ψ I = εAe−k(y−1)φ,

ψ II = −1

2
y2 + y + ε

(
Beky + Ce−ky

)
φ,

ψ III = −β

2
y2 + βy + ε

(
Eeky + Fe−ky

)
φ,

ψ IV = εGek(y− 1
β

)
φ,

(6)

where the parameter,ε denotes small-amplitude perturbations such that 0< ε � 1 andφ = ei(kx−σ t) denotes traveling waves
with frequency,σ , and wavenumber,k. Note that the stream function in both regions I and IV decays to zero as|y| → ∞.

We assume small amplitude traveling wave disturbances to the three interfaces (H+,H0,H−) which demarcate the
discontinuities in vorticity between the regions I–IV,



O.V. Atassi, R.M. Lueptow / European Journal of Mechanics B/Fluids 21 (2002) 171–183 175

H+ = 1+ εη+(x, t),

H0 = εη0(x, t), (7)

H− = 1

β
+ εη−(x, t),

where

{
η+(x, t), η0(x, t), η−(x, t)

} =
∞∫

−∞

{
η̂+(k), η̂0(k), η̂−(k)

}
φ dk. (8)

In order to relate the solutions of the four regions and solve for the coefficients in (6), we apply the interface conditions (5).
Solving for the coefficients in equation (6), we obtain the dispersion relation

(σ − k)

[
1+ β

2σ

(
γ 2− + 1

)][
1+ 1

2σ

(
γ 2+ − 1

)]

= −(σ − k)

[
1− β

2σ

(
γ 2− − 1

)][
1− 1

2σ

(
γ 2+ + 1

)] − (1− β)

[
1+ 1

2σ

(
γ 2+ − 1

)][
1− β

2σ

(
γ 2− − 1

)]
, (9)

whereγ+ = e−k and γ− = ek/β. Note that (9) is invariant to the transformation̂β = 1/β, σ̂ = −β̂σ , k̂ = −kβ̂. Based on
this transformation, finding the critical wavenumber,kcr, for −1 � β < 0 is equivalent to finding the critical wavenumber
for β̂ � −1. The unsteady disturbances described by the dispersion relation are vorticity preserving, and as a result, the total
velocity is continuous across the interface. Another solution to the linear system that is allowed by the continuity of pressure
boundary condition exists in which the disturbance velocity across the interface is discontinuous. In this case,A = G = σ = 0
in (6). This convected disturbance results in a discontinuity in the velocity tangent to the interface, i.e. a vortex sheet, that is
equal to the strength of the vorticity in the region times the amplitude of the disturbance to the interface,η. Althoughσ = 0 for
this disturbance,k → 0 as well and the phase velocity is finite. It can be shown that this disturbance convects with the mean
velocity at the interface.

The growth rate of the small-amplitude disturbances,σI , is plotted in Fig. 4(a) as a function of wavenumber,k, for
a symmetric shear layer,β = −1, whereσI is the imaginary part ofσ . This corresponds to the case considered by Rayleigh [10].
WhenσI > 0 the mode is unstable. Three modes are evident. The two nonsymmetric modes are unstable to long wavelength
disturbances and are represented by the dotted and long-dashed curves. The modes become neutrally stable above the critical
wavenumber,kcr ≈ 1.84 in agreement with Rayleigh [10]. This result indicates that nonsymmetric disturbances with critical
wavelengths greater than about 1.7D should be unstable. Fig. 2 shows a sinuous disturbance with a wavelength of about 3D,
consistent with this result. The solid line in Fig. 4(a) atσI = 0 corresponds to the symmetric (varicose) mode which is neutrally
stable for all wavenumbers. This is the mode that exists for the wall-bounded case [10,12–16]. The real part ofσ , σR, for
symmetric modes is plotted in Fig. 4(b). The dependence ofσR on wavenumber indicates that the symmetric modes propagate as
dispersive waves. However, this does not imply that only unstable nonsymmetric disturbances can be seen in jets. If one assumes
the existence of a potential core which lies between the positive and negative vorticity regions, then symmetric disturbances
are also unstable to long wavelength disturbances [10]. This implies that as one goes downstream where the potential core has
mixed out, nonsymmetric disturbances should dominate.

Fig. 4. (a) The growth rate of three modes is plotted as a function of wavenumber forβ = −1. Nonsymmetric modes: dotted(. . . . . .) and long
dash (— — —) curves. Symmetric mode: solid curve (−−−−−) at σI = 0. WhenσI > 0, the mode is unstable. (b) The real part of the angular
frequency for the neutrally stable mode indicates that it propagates as a dispersive wave.
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Fig. 5. The growth rate for all three modes is plotted as a function of wavenumber for various degrees of jet asymmetry,β. Nonsymmetric
modes: dotted (. . . . . .) and long dash (— — —) curves. Symmetric mode: solid curve (−−−−−) at σI = 0. WhenσI > 0, the mode is unstable.

Fig. 6. Dependence of the critical wavenumber on the jet asymmetry,β, showing that the stability decreases with greater asymmetry.

The effect of asymmetry in the jet velocity profile for four cases whereβ = −0.25,−0.5,−1.5,−2.0 is shown in Fig. 5. In
these cases we observe that varying the relative strength of the positive vorticity to that of the negative vorticity does not result
in a qualitative change in the stability of the jet. Small-amplitude waves remain unstable to long wavelength disturbances for
the two nonsymmetric modes. These results suggest that finite-amplitude long wavelength disturbances will form sufficiently
downstream from the jet exit as the small-amplitude disturbances grow. Note that for the casesβ = −0.5 andβ = −2,kcr = 1.52
andkcr = 3.04, respectively. This is consistent with the scaling invariance in (9). Physically,β = −0.5 implies that layer II is
half as thick as layer III, whereas forβ = −2.0, layer III is half as thick as layer II. Whenβ = −0.5, the critical wavelength
for instability is a particular dimensional wavelength,λcr. Whenβ = −2.0, the critical wavelength for instability is the same
dimensional wavelength,λcr, by symmetry with theβ = −0.5 case. However, since we non-dimensionalize with respect to the
upper layer thickness, the nondimensional critical wavelength forβ = −2.0 is half that forβ = −0.5. Likewise, the maximum
amplification rate forβ = −2.0 is twice that forβ = −0.5 due to the scaling.

From Fig. 5, it is evident that the stability of the jet is modified by the jet’s asymmetry. The dependence of the critical
wavenumber on the jet asymmetry is shown in Fig. 6. Here, we scale the critical wavenumber with the total jet width
(H∞+ − H∞− ) rather than withH∞+ , such thatκcr = kcr(1− 1/β), to permit comparison of the critical wavenumber for jets of
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identical width but different degrees of asymmetry. The critical wavenumberκcr increases monotonically from a symmetric jet
at β = −1 to an increasingly asymmetric jet as|β| gets smaller, indicating that a larger range of wavenumbers are unstable for
more asymmetric jet velocity profiles. The maximum value of the amplification rate,σI , changes only a small amount over the
range ofβ shown in Fig. 6, decreasing from a maximum of 0.247 atβ = −1.0 to 0.194 atβ = −0.47.

3.2. Long wave theory: general results

The dispersion relation shows that small amplitude waves are unstable to long wavelength disturbances. As a result, further
downstream from the exit, these disturbances will grow and become large in amplitude. We consider the evolution of finite-
amplitude, long wavelength disturbances to a shear layer. In this approximation|∂H(+,0,−)/∂x| � |∂H(+,0,−)/∂y| and we
introduce the small parameter,ε, so that|∂H(+,0,−)/∂x| = O(ε). From the kinematic condition at each interface this implies

that 1
u∂H(+,0,−)/∂t = O(ε).

This suggests we expand the complex velocity field in powers ofε:

(u − iv) = (u − iv)0 + ε(u − iv)1 + · · · , (10)

and introduce the slow variablesT = εt , X = εx. In the long wave limit, the continuity equation and the kinematic condition
(4) become

∂u0

∂X
+ ∂v1

∂y
= 0 (11)

and

v1 = ∂H(+,0,−)

∂T
+ u0

∂H(+,0,−)

∂X
, y = H(+,0,−). (12)

Solving for the transverse velocity in (11) we obtain

v1(y,X,T ) = vH0 − ∂

∂X

y∫
H0

u0 dy − uH0

∂uH0

∂X
, (13)

whereuH0, vH0 are the leading order streamwise and transverse velocities along the centerline interface,y = H0(X,T ). The
vorticity in the shear layer is described by (3), which is rewritten in terms of the slow variables as

∂ω

∂T
+ u0

∂ω

∂X
+ v1

∂ω

∂y
= 0, H− < y < H+, (14)

wherev0 = 0 from the continuity equation. Recall thatω > 0 for H0 < y < H+, andω < 0 for H− < y < H0.
Since the flow is irrotational in regions I and IV and the velocity field continuous at the interfaces, we may use Cauchy’s

formula to express the velocity in terms of its expression along the interfacesH+ andH−,

(u − iv)I,IV = 1

2πi

∫
(H+,H−)

(u − iv)II ,III

z′ − z
dz′, (15)

wherez = x + iy ∈ I, IV and z′ ∈ H+,H−. Evaluating the velocity on the interface (H+,H−) using Plemejl’s formula we
obtain:

lim
y→H+

(u − iv)I =
[

1

2
(u − iv)II + 1

2πi

∞∮
−∞

(u − iv)II

X′ − X
dX′

]∣∣∣∣∣
y=H+

,

lim
y→H−

(u − iv)IV =
[

1

2
(u − iv)III − 1

2πi

∞∮
−∞

(u − iv)III

X′ − X
dX′

]∣∣∣∣∣
y=H−

.

(16)

At the interfaces the velocity is continuous, sovI
0 = vII

0 = 0 andvIV
0 = vIII

0 = 0. Using this result in (16) impliesuII
0 = 0 and

uIII
0 = 0.

Substituting these results into (12) yields:

vH± = ∂H±
∂T

(17)
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and

vH0 = ∂H0

∂T
+ uH0

∂H0

∂X
. (18)

Substituting (18) into (13) the transverse velocity can be expressed:

v1(X,y,T ) = ∂H0

∂T
− ∂

∂X

y∫
H0

u0 dy. (19)

We can thus express the evolution of the upper and lower shear layers by

∂

∂T
(H± − H0) + ∂

∂X

H±∫
H0

u0 dy = 0. (20)

This equation describes the evolution of each jet shear layer for an arbitrary velocity profile. Before considering some specific
cases where the jet is subject to either varicose and sinuous disturbances, we utilize the vorticity and momentum equations to
derive other properties of the long wavelength disturbances in a jet flow.

Sinceω = −∂u0/∂y, the vorticity equation, (14), can be written as

D

DT

(
∂u0

∂y

)
= ∂

∂y

(
Du0

DT

)
− ∂u0

∂y

(
∂u0

∂X
+ ∂v1

∂y

)
= 0.

The second term is zero by the continuity equation yielding

∂

∂y

(
Du0

DT

)
= 0

or

∂2p

∂X∂y
= 0. (21)

As a result,

p = f (X,T ) + g(y,T ). (22)

They-component of the momentum equation implies that the pressure is independent ofy,

ε2 D

DT
v1 = − 1

ρ

∂p

∂y
= O

(
ε2), (23)

i.e.,p = f (X,T ). Thex-component of the momentum equation yields:

Du0

DT
= − 1

ρ

∂p

∂X
= − 1

ρ

∂f

∂X
. (24)

However, sinceu0 = 0 at the interfaces,y = H±, thex-momentum equation shows there is no acceleration of the fluid particles
and the leading order longwave solutions are kinematic, i.e.∂p/∂X = 0. Thus,

Du0

DT
= 0, (25)

for any y. If the vorticity is continuous across the interfacey = H0, then∂uH0/∂y = 0 and the streamwise velocity at the jet
centerline is governed by

∂uH0

∂T
+ uH0

∂uH0

∂X
= 0, (26)

with solutions

uH0 = uI
0
(
ξ,H I

0(ξ)
)

(27)

and

X = ξ + uI
0
(
ξ,H I

0
)
T, (28)
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whereH I
0(ξ) = H0(ξ, T = 0) is the deformation of the jet centerline atT = 0. This solution shows that the streamwise velocity

is constant along characteristics moving with the local velocityu(H0).
Note that by integrating over each shear layery ∈ (H0,H+), y ∈ (H−,H0) and using the result thatu0 = 0 at y = H±,

Eq. (26) can be expressed, to leading order, as

∂.+
∂T

+ .+
∂.+
∂X

= 0, (29)

∂.−
∂T

+ .−
∂.−
∂X

= 0,

where.+ = ∫ H+
H0

ω dy and.− = ∫ H0
H− ω dy are the circulations per unit span or the velocity jumps across each shear layer. The

solution to (29) is of the form,

.± = f±[X − .±T ], (30)

where.±(X,0) = f±(X). Eq. (29) indicates that regions of circulation convect downstream with a speed proportional to the
local velocity. As a result, regions of higher circulation convect downstream faster resulting in increasing vorticity gradients.
This process results in a concentration of regions of vorticity into sharp fronts. Moreover, this result shows that the process of
vorticity concentration into sharp fronts is related to the strength and thickness of the shear layer. As a result, the concentrated
regions of vorticity which drive the flapping frequency of the jet would be expected to scale with the local vorticity. The velocity
jump is equal across each side of the jet, i.e..+ = .− suggesting that both sides of the jet will steepen at the same rate.

In the transition region of the jet where the shear layers on opposite sides of the jet have merged, the shear layer thickness
is the jet half width. Experiments have shown that when the flapping frequency is non-dimensionalized by local mean-velocity
scale and lengthscale the flapping frequency is equal to a constant [5].

The solutions in (30) form shocks, or ‘break’, at times [17]

Ts = min[−1/f ′], (31)

where the prime denotes differentiation with respect toX. As an example, we consider an initially slowly varying Gaussian
circulation distribution,.(X,T ), characterized by

f (X) = 1+ Ae−( X
α

)2
, (32)

whereA is the amplitude of the disturbance andα is a parameter related to the wavelength of the perturbation. Then

df

dX
= −2AX

α2
e−( X

α

)2
(33)

and breaking takes place at

Ts = α

A

(
e

2

)1/2
. (34)

Eq. (34) shows that the timescale for the formation of sharp fronts scales with the initial spatial distribution of the disturbance,
α, and inversely with the strength of the disturbance,A. For example, the circulation,.±, is plotted in Fig. 7 forA = 0.5
andα = 1, based on numerical calculations. The circulation is shown for three time instants,T = 0, 0.45Ts , 0.90Ts . As the

Fig. 7. The steepening of a small amplitude, long wavelength, sinuous Gaussian disturbancef (X) as it propagates in the streamwise direction
for T = 0,0.45Ts , 0.9Ts , from left to right.
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disturbance propagates downstream, it steepens indicating the formation of sharp fronts of vorticity. The time that breaking
occurs for these parameters isTs = 2.33.

In what follows, we consider several vorticity distributions to show that the vorticity distribution has a strong influence on the
evolution of the jet and the type of disturbances, sinuous or varicose, which propagate downstream. For a varicose disturbance,
the transverse velocity at each interface is antisymmetric or opposite in sign about the jet centerline and for a sinuous disturbance
the transverse velocity is symmetric or the signs of the transverse velocity are the same, about the jet centerline. Physically, this
means that disturbances to the upper and lower shear layers will move in the same direction for a sinuous disturbance and in
opposite directions for varicose disturbances.

3.3. Long wave theory: evolution equation for the jet shear layers

The results of the previous section show that velocity gradients in each jet shear layer will steepen with time. In this section,
we derive equations governing the evolution of the interfaces demarcating vortical flow from irrotational flow for a variety of
cases with both sinuous and varicose disturbances to determine the conditions under which flapping motion will occur.

3.3.1. Long wave theory: symmetric modes and the wall-bounded jet
We first consider the case where the vorticity in the lower shear layer is the mirror image of the vorticity in the upper shear

layer and the disturbances in each shear layer are symmetric. It then follows from continuity of transverse velocity aty = H0
thatvH0 = 0, H0 = 0 and this corresponds to the case of a slip wall bounding the shear layer. Owing to the complete symmetry
about the centerline, we need only consider the upper shear layer, 0< y < H+. Eq. (20) takes the form

∂H+
∂T

+ ∂

∂X

H+∫
0

u0 dy = 0. (35)

We define

c(X,H+, T ) =
H+∫
0

∂u0

∂H+
dy. (36)

The evolution of the interface can then be written:

∂H+
∂T

+ c(H+,X,T )
∂H+
∂X

= 0. (37)

This equation has the solution

H+ = H I(ξ) (38)

with H I+(ξ) = H+(ξ,0), dX/dT = c(X,H I+(ξ), T ) and whereX = ξ atT = 0. This solution shows that the disturbances to the
shear layer will propagate with speeds proportional to the initial disturbance amplitude and thus exhibit steepening with time.

3.3.2. Uniform vorticity limit
Another simple case occurs when the vorticity is uniform in each shear layer [10–16]. Note that here the vorticity is

discontinuous across the three interfaces and soω+ → 1 andω− → β in (2) and that motion of the centerline can only
occur whenβ �= −1. Note that this vorticity distribution differs from that observed in the flow visualization which showed a
significant streamwise variation in the vorticity distribution.

In this case, the streamwise velocity field is piecewise linear,

uII
0 = −y + H+(X,T ),

uIII
0 = β

(−y + H−(X,T )
)

and, from (20), the interface evolution equations in both shear layers become

∂(H+ − H0)

∂T
+ (H+ − H0)

∂(H+ − H0)

∂X
= 0 (39)

and

∂(H− − H0)

∂T
+ β(H− − H0)

∂(H− − H0)

∂X
= 0. (40)
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Whenβ = −1, H0 = 0 and (39), (40), (37) yield

∂

∂T
H± + H±

∂

∂X
H± = 0. (41)

Eqs. (39), (40) govern the evolution of the upper and lower shear layers of the jet in terms of the difference in height between
the interfacesH± andH0. Continuity of streamwise velocity aty = H0 implies that(H+ − H0) = β(H− − H0) and that the
circulation in the upper and lower shear layers is equal. The solutions to (39) and (40) are of the form

F+ = f0[X − F+T ],
F− = g0[X − βF−T ], (42)

whereF+ = H+ − H0, F− = H− − H0 and whereF+(X,0) = f0(X) and F−(X,0) = g0(X). In the limit of symmetric
disturbances for whichβ = −1 andH0 = 0, the system reduces to the wall-bounded shear layer result and indicate that in the
uniform vorticity case the parameter beta plays an important role since a transverse velocity at the jet centerline can only exist
whenβ �= −1. The solutions (42) indicate that the higher portions of the interface will propagate downstream faster than the
lower portions resulting in the steepening of the interface and the formation of steep positive and negative vorticity fronts. This
result is not unexpected since in the limit of uniform vorticity the magnitude of the circulation per unit span is associated with
the height of the interface.

Evaluating (19) at each interface and noting that(H+ − H0) = β(H− − H0), the normal velocity satisfies the condition,
sgn{v1(y = H+)} = −sgn{v1(y = H−)}. Thus, for a uniform vorticity distribution only varicose disturbances can occur and we
must consider more general jet velocity profiles to obtain the flapping motion observed in the experiments.

3.3.3. Long wave theory: sinuous disturbances and flapping motion
Although the uniform vorticity case offers some insight into the steepening of the jet it does not allow finite amplitude

sinuous motions of the jet. Moreover, the flow visualization suggests that the flapping motion of the jet occurs when there is
a ‘vortex-street’ type of alignment of the vortices causing motion of the jet centerline. In this section, we look for solutions to
the jet centerline which exhibit flapping. We define the jet centerline to be a material interface along which the vorticity is zero
since along this interface the vorticity is transitioning from positive to negative as one crosses the upper shear layer to the lower
shear layer.

Since we are looking for solutions to sinuous disturbances, we are interested in solutions where the transverse velocity has
the same sign in both shear layers. As a special case, we assumev1 is a symmetric abouty = H0, i.e.,v1(y −H0) = v1(H0−y)

and thus from they-momentum equation the pressure is also symmetric, i.e.,

∂v1

∂y
= ∂p

∂y
= 0, y = H0. (43)

By continuity,

∂u0

∂x
= 0, y = H0, (44)

or uH0 is constant. Using (43), they-momentum equation takes the final form

∂v1

∂T
+ uH0

∂v1

∂X
= 0, (45)

and the transverse velocity,v1, has the solution

v1 = V (X − uH0T ). (46)

The evolution of sinuous disturbances at the jet centerline are described by the evolution equation

V (X − uH0T ) = ∂H0

∂T
+ uH0

∂H0

∂X
. (47)

The centerline interface thus has solutions of the form

H0 = F(X − uH0T ) + X

uH0

V (X − uH0T ). (48)

This result shows that sinuous disturbances will propagate with a constant velocity equal to the initial centerline velocity.
Moreover, the disturbances will grow linearly as they convect downstream. This result also shows that the flapping motion will
become more pronounced as one moves downstream which is consistent with experimental observations. In the more general
case where the transverse velocity is not a symmetric function abouty = H0 an analytic solution for the jet centerline cannot
be found. However, it is expected that the disturbances will grow algebraically and also steepen as they propagate downstream.
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4. Discussion

The flapping motion in a two-dimensional turbulent jet has been attributed to two causes: (1) a lateral oscillatory motion of
the entire flow field resulting from a traveling wave instability, (2) a sequence of coherent structures alternating in sign on either
side of the jet [4–7]. The preferred explanation attributes the flapping to organized coherent structures based on comparing the
flapping frequency to the frequency of intermittent structures in the turbulent jet. In fact, Oler and Goldschmidt attempted to
model the flapping motion as a superposition of a series of Rankine vortices arranged as a vortex street [18]. The problem with
attributing the flapping to a series of coherent structures that supposedly drive the flapping motion is that there is no explanation
for the origin of the coherent structures themselves.

In the analysis presented in this paper, we do not pre-suppose any organized coherent structures but instead consider the
stability of the simplified flow field. The results of the linear inviscid analysis show that in the transition region where the
jet core has mixed out long wavelength antisymmetric disturbances are unstable and will grow to finite amplitudes whereas
symmetric disturbances are neutrally stable. The conclusions of the nonlinear finite-amplitude analysis are that (1) through a
nonlinear steepening mechanism concentrated regions of vorticity will develop into sharp fronts of vorticity, (2) the formation
timescale of these regions scales with the local vorticity, (3) the concentrated regions of vorticity convect downstream with
the local mean velocity, (4) the flapping motion results for sinuous disturbances which occur only for nonuniform vorticity
distributions and (5) the flapping motion grows linearly with downstream distance. These conclusions are in agreement with
experiments which attribute the flapping of the jet to a traveling wave instability (sinuous) which leads to a sequence of coherent
structures alternating in sign (asymmetric) on either side of the jet and whose strength scales with the local vorticity [4–7].

The simple experiment visualizing the flow in the transition region of a planar jet shown in Fig. 2 links the proposed causes
for flapping (traveling wave instability and coherent structures) to the results of our analysis. The initial slow variation in the
streamwise direction and oscillation of the overall jet field is related to the sinuous (nonsymmetric) structure of the instability.
The motion is sinuous near the jet exit but it leads to coherent circular motions further downstream that eventually drive the
finite-amplitude centerline motion which grows and steepens as it convects downstream. Our analysis describes the development
of vorticity fronts which convect downstream with the local mean flow and the motion of the jet centerline resulting from finite-
amplitude sinuous disturbances. Strong streamwise variation in circulation is evident in Fig. 2 where the circulation changes
from positive to negative and back to positive over a small streamwise distance. A schematic of the vortex-jet system, which
drives the flapping motion corresponding to the flow visualization, is shown in Fig. 8. The vortex-jet consists of three vortices
and a streakline in the jet core indicated by the dark curve. At point A, vortices 1 and 2 dominate the local flow pushing the jet
up. At point B, vortex 2 dominates the local flow driving the jet down and at point C vortex 3 dominates the local flow pushing
the jet up again. The resulting vortex-system continues the flapping motion of the jet further downstream of the initial sinuous
disturbance. This motion plays an important role in the entrainment of irrotational fluid into the planar jet and the mixing of the
jet with the ambient fluid.

The results of this paper suggest that attempts to control the mixing properties of the jet should focus on (1) attempts to
modify the shear layer or (2) attempts to excite symmetric modes to prevent or modify the vortex system which drives the
flapping motion. Further experiments are necessary to show more time sequences, the velocity field over a greater streamwise
extent, and the evolution of the jet vorticity to validate the analytical results presented in this paper.

Finally, a special case of the model presented here occurs when one considers only symmetric disturbances in a uniform
layer of vorticity. This case satisfies impermeability at the line of symmetry and thus may model a wall-bounded shear layer.
In particular, Jimenez and Orlandi studying the formation of vortices in a turbulent channel showed that a vortex layer in the
neighborhood of a slip wall tends to roll into discrete vortices via nonlinear steepening [12]. Furthermore, they conjectured
that dispersive effects may act to explain the persistence of these discrete vortices. The current work generalizes the work of
Jimenez and Orlandi to unbounded flows such as jets and examines the effect of vorticity distribution on the motion of the jet.
By analogy to the wall-bounded work, we conjecture that dispersive effects may act in the jet model and explain the persistence
of the antisymmetric structures.

Fig. 8. Schematic of the vortex-jet system corresponding to the visualization in Fig. 2.
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